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Wahba's Problem - SIAM Review, July 1965

Find the orthogonal matrix A with determinant +1 that minimizes

Xiai]bi - Aril 2L(A)= 2

where {be} are unit vectors in a body flame, {re} are unit vectors

in a reference flame, and {ai} are non-negative weights. Writing

L(A) -/t o - tr(ABT), with A0 - Ziai and B - Ziaibi rw,

it is clear that we can minimize L(A) by maximizing tr(ABT).

This is equivalent to the orthogonal Procrustes problem, which is

to find the orthogonal matrix A that is closest to B in the sense of

the Frobenius norm, IMII - Xi,jMi_ - tr(MM w), since

Z - BII - Z[l_ + IIBII - 2tr(ZB T) - 3 +IBI - 2tr(AB T)



First Solutions- SlAM Review, July 1966

l:J. L. Farrell and J. C. Stuelpnagel:

B has the polar decomposition B - WH where W is orthogonal

and H is symmetric and positive semidefinite.

If detW is positive, then Aop t- W.

Else, diagonalize H by H- VDV T, where V is orthogonal and

D is diagonal with elements arranged in decreasing order.

Then Aop t - WV diag[1

2: R. H. Wessner:

Aopt _ (BT)-I (BTB)1/2,

1 detW]V T.

which is equivalent to Aop t - B(BTB) -1/2.

This requires 3 vectors (detB _: 0); only 2 are really needed.

3-6: J. R. Velman, J. E. Brock, R. Desjardins, and Wahba.



Singular Value Decomposition (SVD) Method - 1987

B has the Singular Value Decomposition:

B- U Z VT - U diag[Z,, Z22 _33] vT,

where U and V are orthogonal and Z_l > _]22 _-_ _]33 _ 0.

The optimal attitude matrix is Aop t- U diag[1 1 (detU)(detV)] VT.

The SVD method is completely equivalent to the Farrell and

Stuelpnagel solution with U- WV. The difference is that SVD

algorithms exist now and are among the most robust numerical

algorithms. MATLAB computes Aop t from B in two lines of code.



QUaternion ESTimator (QUEST) - 1978

The first three rows of (/_'max I- K )qopt- 0 give

qopt = 1 Ix]whereJ7 _+Ixl2 _ ' and

x = {adj [(/],ma × + trB)l- B- BT]} z

]/- det[(_ma x + trB)l- B- B T ]

Find/lm= _ by Newton-Raphson iteration of the characteristic eqn.,

det(_ma × l- K) - (/_'max -- tr B)7 - zTx -- 0.

Iterate from 20, since/_'max is very close to Ao

is small. The analytic solution is slower and
if L(Aop t ) --/_0 --/_max

no more accurate.

QUEST would fail for 180 ° rotations, but the method of sequential

rotations (effectively permuting q components) handles this case.



EStimator of the Optimal Quaternion (ESOQ) - 1996

Solve the characteristic equation for/_ma_ as in QUEST.

The adjoint of _maxI- K can be shown analytically to obey

adj(_ma x I- K) - (_max -/_'2)(_max -- '_'3)(_max -- '_'4)qoptqTpt ,

where X2, 2,3, and _,4are the other three eigenvalues of K.

Thus qopt can be computed by normalizing any non-zero column of

adj(/_ma_ I-K ). This is the "4-dimensional cross-product" of the

other three columns of/_max I- K.



ESOQ2 - 1997

_ Iesin(¢ / 2)q
Substituting qopt L cos(q_ / 2) J

into (/_max I- K )qopt- 0

(&m_ -- trB) cos(0 / 2) - eXzsin(O / 2) and

[(2m.x + trB)I- B- B x ]esin(O / 2) - zcos(O / 2).

Eliminating the rotation angle 4_gives Me- 0, where

gives

M -('/]'max -- trB)[(Am_x + trB)I- B- B v ]- zz r - [m_ m 2 m3].

The rotation axis is e- Y/lYl,where y is any mix mj. Then

qopt -- 1 I, ma :tr"'yl
_/l(/_,max -- trB)yl 2 + (z. y)2 y



Fast Optimal Attitude Matrix (FOAM) - 1993

Find/_'max by solving the characteristic equation

o - (2 -IIBII_,)2_ 8/_, detB- 4lladjBil2F.

This becomes an easily solved quadratic in/_2 if det B- 0, as in

the case of two observations. The attitude matrix is given by

Aopt- (/('/_'max - det B)-l[( K + IBll2F)B + _maxadj Br - BBrB],

where t¢ - ½ 2 2(/_max--IIBILF)"

For the analysis in this paper, the quaternion representation of

optimal attitude is computed.

the

ESOQ, ESOQ2, and FOAM avoid QUEST's sequential rotations.



Two-Observation Case

In this case detB- 0, the

equation vanish, and

odd terms in ,_ in the characteristic

2
/l,m_x -- _]a_ + a2 + 2ala2[(b , •b2)(r _•rz)+ [bl x b211r_x r211 •

This simplifies both QUEST and FOAM; FOAM gives

Aop t - b3F. T3 "_- (al/_max)[blr? + (bl × b3)(rl × r3) T]

where

+ (a2/_max)[b2r2 + (b 2 x b3)(r 2 x r3)T],

b 3 -(b 1x b2)/Ib 1 x b21 and r 3 -(r 1 x r2)/Ir 1x r21.

This goes over to the TRIAD solution for a_ -0, a2-0, or a_



Sequential Methods

The basic idea is to propagate B or K to time t and then update.

Filter QUEST - 1989

B(new) -/_3×3B(old) +

k+n t

Z aibirT,
i=k+l

sum over n, observations at t.

Recursive QUEST (REQUEST) - 1996
k+n t

K(new)-/_(I)4×4K(old)_ v4X4 "+" E aigi' where
i=k+l

(bi × r i)T bi.r i •

These are mathematically equivalent. Filter QUEST requires
fewer computations, but neither has been successful in practice.



Reynolds's Sequential Algorithm - 1997

There are two orthogonal quaternions that map a vector into b_:

l lbixri]andq2-ql = _/2(1 + b_.ri) 1 + bi.r i 1 [bi+ri 1a/2(1+ bi • ri) 0 "

These span the subspace of 4D quaternion space consistent with

this measurement. The projection matrix onto this 2D subspace is

T
q, qT + q2q2 - ½(I + _2i).

We update the quaternion by q(+) - (I + rlffi)q(-)/l(I + rl_ )q(-)],

where r/- 1 for perfect measurements, and 0 < 77< 1 for filtering.



Star Camera Attitude Determination (SCAD) - 1998

Write r i

Then

- P + (ri - _) with _ _- (__,iairi)/(Ziai ), and similarly for b i.

g(n) - (½Eiai )[b - ngl 2 + ½_iail(bi - b)- n(r i - p)[2.

For small-field-of-view sensors, the second term is much smaller

than the first. The general quaternion minimizing the first term is

q(q/) - qlcos(_/2) + qzsin(qt/2)

where q, and q2 are the two quaternions that map r/Irl into b/Ib I.

Then an arctangent gives the t/r that minimizes the second term.

Computation of P and b makes SCAD fairly slow.



Testing

MATLAB versions of the q method, the SVD method, QUEST,

ESOQ, ESOQ2 and FOAM were tested. The q method used e ig
and tile SVD method used svd. The other methods used 0, 1, or 2

iterations of the characteristic equation to compute 2max.

Three test scenarios were simulated:

Star tracker scenario: 5 stars in narrow field-of-view star tracker,

6 arcsecond per star per axis measurement errors

Unequal weights: one measurement with 1 arcsecond
measurement noise, two with 1° measurement noise

Mismodeled weights: two measurements with 0.1 °

noise and one with 1°, all weighted equally.

measurement

Each scenario was tested with 1000 random attitude matrices.



Accuracy Results

All algorithms performed equally well in the star tracker scenario.

The q method, the SVD method, and FOAM performed well in

the unequal weight scenario. The iterative refinement of/_,,,a_

failed in QUEST, ESOQ, and ESOQ2 in this scenario.

A single update of/_max is required for best performance in the

mismodeled weight scenario (except in the q and SVD methods).

A second update of J_max may improve the agreement of the

estimate with the optimal (q and SVD method) attitude, but it

never improves the agreement with the (simulated) true attitude.

Special first-order variants of ESOQ (ESOQF1) and ESOQ2

(ESOQ2.1) were developed to take advantage of this observation.
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Summary

The most robust estimators minimizing Wahba's loss function are

Davenport's q method and the SVD method. The q method is
faster than the SVD method with three or more measurements.

The other algorithms are less robust since they solve the

characteristic polynomial equation to find the maximum

eigenvalue of Davenport's K matrix. They are only preferable

when speed or processor power is an important consideration.

Of these, FOAM is the most robust and faster than the q method.

Robustness is only an issue for measurements with widely

differing accuracies, so the fastest algorithms, QUEST, ESOQ,

and ESOQ2, are well suited to star sensor applications.


